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Multiple Tkrbo Codes
D. Divsalar  and E }’ollata’

Jet Propulsion I.aboratory, California Institute of Tcc]mology,  Pasadena, CA 91109

ABSTRACT: In this paper, wc inlroducc mul~iple turbo codes ancl a suit-
able dccodcr structure derive.d from an approximation to the maximum a
posterior probability (MAP) decision rule, which is substantially different
from the dccodcr for two-code-based cncodcrs. W dcvclopcd new rate
1/3 and 2/3 constituent codes to be used in the turbo encoder structure.
These codes, for 2 to 32 states, are designed by using primitive polyno-
mials. The resulting turbo codes have rates b/n, b = 1, 2 and n = 3,4,
and include random intcrlcavcrs for belter asymptotic performance. A
rate 2/4 code with 16QAM  modulation was used to realize a turbo trcl-
Iis coded modulation (T~CM) scheme at 2 bit/scc/FIz  throughput, whose
performance is within 1 dfl from the Shannon limit at 13ER= 10-5.

1. INTROI)UCTION

Coding theorists have traditionally attacked the problem of designing
good codes by developing codes with a lot of structure, which lc.nds itself
to feasible decoders, although coding tbcory suggests that codes chosen
“at random” should perform well if their block size is large enough. The
challenge to find practical decoders for “almost” random, large codes has
not been seriously considered until rcccntly. Perhaps the most exciting
and potentially important development in coding theory in recent years
has been the dramatic announcement of “turbo codes” by Berrou  et al, in
1993 [7]. The announced performance of these codes was so good that
the initial reaction of the coding establishment was deep skepticism, but
recently researchers around the world have been able to reproduce those
results [15, 18, 9]. The introduction of turbo codes has opened a whole
new way of looking at the problcrn of constructing good codes [5] and
decoding thcm with low complexity [7, 2].

These codes achicvc near-Shannon-linlit error correction performance
with relatively simple component codes and large interleaves. A required
Eb/No of 0.7 dtl was reported for a bit error rate (BER) of 10-5 for a rate
1/2 turbo code [7].

The purpose of this paper is to: (1) Design the best comporrcnt codes
for turbo codes of various rates; (2) Dcscribc a suitable trellis termination
rule; (3) Design pseudo-random interlcavcrs; (4) Design turbo codes with
mul[iple component codes; (5) Design an ileralivc decoding method for
multiple turbo codes by approximating the optimum bit decision rule. (6)
Design of low-rate turbo codes for power limited channels (deep-space
communications) and CDMA;  (7) Design of high rate turbo codes for
bandwidth limited channels (’Ihrbo trellis coded modulation); (8) Give
examples and simulation results.

I I.  PAk4mm  CONCAqENATlON C3F CONVOI,UTIONAIJ
COI)IH

The codes considered in this paper consist of the parallel concatenation
of multiple convolutional codes with random interleavcrs (permutations)
at the input of each cncodcr. This extends the original results on turbo
codes reported in [7], which considered turbo codes formed from just two
constituent codes and overall rate 1/2.
Figure 1 illustrates a particular example that will be used in this paper
to verify the performance of these codes. l-he encoder contains three
recursive binary convolutional cncodcrs, with m 1, n12 and nl~ memory
cells, respectively. In general, the tbrcc component encoders may not
be identical and may not have idemtical code rates. The first component
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Figure 1: Exartlplc of encoder with three codes

encoder operates directly (or thrcmgh ml) on the information bit sequence
u =. (111, . . . . UN) of length N, producing the two output sequences ~
and xl. I“he second component encoder operates on a reordered sequence
of inforn Iation bits, UZ, produced by an intcrleavcr, rrz, of length N, and
outputs the sequence x2. Similarly, subsequent component encoders op-
erate on a reordered sequence of information bits, Uj. produced by inter-
Icaver ~j,  and output the secprcnce Xj. ‘f ’he interleave is a pseudorandom
block scr mbler defined by a permutation of N elements with no repe-
titions: A complete block. is rc.ad into the the intcrleavcr and read out
in a specified (fixed) rarrdcrm order. The same interlcaver is used re-
peatedly for all subsequent blocks. Figure 1 shows an example where a
rate r = 1/n = 1/4 code is generated by three component codes with
mt =. m2 = m3 == m == 2, producing the outputs XO = u, XI = u. gl/gO,
X2 ,= U2. gt/go, and X3 = U3 .gl/gO (here rrl is assumed to be an idenlity,
i.e., no permutation), where the generator polynomials go and .gI have
octal repicsentation (7),,<,,,1 and (S)”(,al, respectively. Note that various
code rates can be obtained by proper puncturing of x,, X2, X3, and even
X() if the decoder works (for an example, see Section VIII).

We usc the encoder in Fig, I to generate an (n(N  + m), N) block
code, where the m tail bits of COCIC 2 and code 3 are not transmitted. Since
the component encoders are recursive, it is not sufficient to set the last
m inforniation bits to zero in order to drive the encoder to the all-zero
state, i.e., to fer-minok the trellis. The termination (tail) sequence depends
on tbc slate of each component encoder after N bits, which makes it
impossible to ternlinate all component encoders with m predetermined
tail bits. This issue, which had not been resolved in the original turbo
code iml)lcmentation, can be dealt with by applying the simple method
described in [9], which is valid for any number of component codes. A
more. conlplicated method is dcscribcd in [17].

The design of the consti[ucnt convolutional codes, which are not neces-
sarily op[imum  convolutional codes, was originally reported in [5] for rate
1/n codes. In this paper we extend the rcstrlts to rate b/n codes. It was
suggested in [2] that good random cocles are obtained if go is a primitive
polynomial (without proof), This suggestion was used in [5] to obtain
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“good” rate 1/2 constituent codes, rrnd, in this paper, to obtain “good” rate
l/3 and 2/3 constituent codes. A more precise dcfini[ion of “good” codes
is given in Sections 111 and V.

111. RANI)OM  INTFXIJftAVE1{S

The challenge in designing good turbo codcs is to find !he pairing of
codewords from each individual encocler, indoccdby  a parlictrlar se(of
interleavcrs. Inttlitivcly, wewollld likctoavoid  pairing low-weight code-
words from one encoder with low-weight words from the other encoders.
In this section we examine the effects of random intcdcavcrs  on the low-
weight input scquenccs which may produce low output cocleword weights.
The input seqtrenccs with a single “ 1” will appear again in the other en-
coders, foranychoiccof  interlcavcrs. This rnotivatcstheuscof  recur-
sive encoders, since the output weight duc to weight-l input sequences
u = (., .001000 ...) is large. Now we briefly cxarninetheissueof
whether oncorn~orc  ranclom iI~tcrleavcrs canavoid  nlatchingsnlall  scp-
arationsbctwecn  the 1’sofaweight-2 data scqucncc with cquallysrnall
separations between the l’sof its permuted version(s). Consider, forex-
ample, a particular weight-2data sequence (o. ,OOIOOIOOO.  .C), which
correspnds toalow-wcight  codeword ineachof thecncodcrs  of Fig. 1.
If we randomly select aninterlcaver  ofsiT.c N, theprobabiiity  that this
sequence will be permuted into another sequence of (he same form is
roughly 2/N (assuming that N is large and ignoring minor edge effects).
The probability that such an unforhrnate pairing happens for at least one
possible position of the original scqucncc (. .0 001001000 ...) within the
block size of Nisapproximatcly  1 –(l –2/N)N  * 1 –e-*. This im-
plies that the minimum distance of a two-code turbo code constructed with
a random pcrmutationi  snot likely tobc much higher than the encoded
weight of such an unpcrmuted  weigtrt-2 data sequence. By contrast, if
weusethrcccodcs  and two different intcrlcavcrs, the probability that a
particularscqucncc  (o.. 001001000 ...) will bcrcprocluccd  by both in-
tcrleavers isonly(2/N)2.  Nowlhcprobability  of finding such anunfor-
tunatedata  seqtrcx~somcwhcrc  within thcblockofsizc N is roughly

1 – [1 - (2/iv)*] % 4/N. Thus, it is probable that a three-code turbo
code using two random inlcdeavcrs will see an increase in its minimum
distance beyond the encoded weight of an unpcrrnuted  weight-2 data se-
quence. This argument can be cxtcndcd to account for other weight-2 data
sequcnccs that may also produce low-weight codewords. For compari-
son, Ict us consider a weight-3 data sequence such as (.. . 0011100.0 .).
The probability that this sequence is reproduced with onc random in-
terlcavcr is roughly 6/N*, and the probability that some sequcncc of
the form (.. 001 1100 ...) is paired with another of the same form is
I – (I – 6/N2)N * 6/N. Thus, for large block sizes, the bad weight-3
data sequences have a small probability of being matched with bad weight-
3 permuted data sequcnccs, even in a two-code systcm, For a turtm COCIC
using three codes and two random intcrlcavcrs, this probability is even

* * N - ?36/N3 I.his implies  that the minimum
smaller, 1 – [1 – (6/N ) ] ---
distance codeword of the turbo code in Fig. 1 is more likely to result
from a weight-2 data seqocncc of the form (. ~. 001001000. ~.) than from
the weight-3 sequcncc (.. 0011100. . .). }Iighcr weight sequences have
an even smaller probability of reproducing thcmsclvcs after being passed
through the random interlcavcrs.

For a turbo code using q codes and 9 – 1 intcrlcavers, the probability
that a wcight+r data scqucncc will bc reproduced somewhere within the

block by all q – 1 permutations is of the form 1- [1 -- (j?/iv”-”Y-’]N,
where /l is a number that depends on the wcighl-rr data scqocnce but does
not incrcasc with block size N. For large N, this probability is proportional
to (l/N) nQ-”-’, which falls off rapidly with N, when n and q arc greater
than two. Furlhcrmore,  the symmetry of this expression indicates that
increasing eid~cr the weight of the data scqucncc n or the number of codes
q has roughly the same effect on Iowcring  this probability.

In summary, from the above arguments, wc conclude that weight-2

data sequences arc an important factor in the design of the constituent
codes, and that higher weight sequences have successively decreasing
importance [12, I I]. Also, increasing the number of codes and, corre-
spondingly, the number of intedeavcrs, makes it more and more likely
that the bad input scqtmnccs will bc broken up by one or more of the
permutations.

The overall minimum distance is not the most important characteristic
of the turl~  code if it is due to weight-n dala sequences with rr > 2. The
pcrforrnallce of turbo codes with random interleaves can be obtained by
transfer function bounding techniques [6, 4, 12, 13].

I V .  DESIGN  OF PA R T I A L L Y  RANOOM  INNHU,EAVEJL$

Interleavcrs should be capable of spreading Iow-weight input sequences so
that the resulting codeword has high weight. In order to break low-weight
sequences, random intcrleavers are desirable.

We have designed scmirandorn permutations (interleaves) by gener-
ating random integers t, 1 s i s N, without replacement, We define
an “S-rat!dom” permutation as follows: Each randomly selected integer
is compared to S previously selected integers. If the current selection
is equal to any .$ previous selections within a distance of +S, then the
current selection is rejected, This process is repeated until all N integers
arc selected. The searching time for this algorithm increases with S and
is not guaranteed to finish successfully. However, we have observed that
choosin~ S < ~N/2 usually produces a solution in a reasonable time.
Note that for S = 1, we have a purely random intedeaver.

V .  DESIC:N  OF CONSTITU~NT  ENCO~~RS

As discussed in Section Ill, maximizing the weight of output codewords
corresponding to weight-2 data sequences gives the best BER performance
for moderate bit SNK as the random intcrlcavcr size N gets large. In this
region the dominant term in the expression for bit error probability of
turbo codes is

““’’”’Q(W”’2+2))
where d~2 is the minimum parity-weight (weight duc to parity checks only)
of the codewords at the output of the jti constitrrcnt code due to weight-2
data sequences, and j? is a constant independent of N. Define d j,2 =
df2 + 2 as the minimum output weight including panty and systematic
bits.
Theorem. For any r = ~,~i recursive systematic convolutional encoder
with generator matrix

[

M!?)
~
h(j (D)

G == Ibxb .

hJ(DJ
ho(r>)

where }~Xb is a b x b identity matrix, dcg[hi(D) : m), hj(m # ho(m,
i=,],2 , . . . . b and ho(i))  is a primitive polynomial-of degree n~j, the
following upper bound holds

Proof  In the state diagram of any rccursivc systematic convolutional
encoder with gcncraror matrix G, there exists at least two non-overlapping
loops corresponding to all-zero input sequences. If ho(f))  is a primitive
polynomial there arc two loops: one corresponding to zero-input, zero-
output scqtrcnces with branch length one, and the other corresponding
to T.erc,-input but non-zero-output sequences with branch length 2m/ – 1,
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which is the period of mrixirnal length (ML) linear feedback shift registers
(FSR) with degree Inj. The parity codeword weight of this 100P is 2“’1-  1

due to the balance property of ML. sequences. This weight depends only
on the degree of the primitive polynomial and is independent of hi (D) duc
to the invariance to initial conditions of Mt. FSR sequcnccs. In general,
the output of the encoder is a linear function of its input and current state.
So, for any output we may consider, provided it clepcncis at least on one
component of the state and it is not ho(D),  then the weigh[ of a zero input
loop is 2MJ  - 1, by [hc shift-and-add property of ML FNRs.

A
Xz

Xt

%

I &-----+
Figure 2: Canonical representation of a rate ~ encoder (b = 2,
121j  = 3).

Consider the canonical representation of a rate b + 1/b encoder as
shown in Fig. 2, when the switch is in position A. Let .$~ (D) be the state

sof the encoder at time k with coefficients .$i, $,. ... ~,_!, where the
output of the encoder at time k is

x = s:;!, + & u:hi.m, (1)
i.. l

The state transition for input u!, ..., u~ at time k is given fIY

[

b
Sk(D) = ~U$hj(D)  +

i=]

From the all-zero stale we can enter
iflpUt syn~bok  ul,  . . . . ub at state

b

1DS~-[ (D) mod h,)(D) (2)

the zero-input loop with non-zero

s’ (D) = z Ui hi (D)  rllod }JI)(D) (3)
i=]

From the same non-zero input symbol we leave exactly at slate S2mj  - 1(D)
back to the all zero state where S‘m’ - i (D) satistics

S’(D)  = Ds*M’-’ (D) mod ho(D) (4)

i.e SZ”I - I (D) is the “pred~essor”  to state S’ (D) in the ZCM-inpJt  loop.
.,

If the most significant bit of the predecessor state is zero, i.e., S~~,!-l 1 = O,

then the branch output for the transition from S2’”) -1(1)) to S] (D) is zero

for zero input symbol. Now consider any weight 1 input symbol, i.e.,
uj=lfor j=ianduJ=Oforj  #i, j=l,2,. ... l.hcqucstionon
is: what arc the conditions on the coefficients hi(D) such that, if we enter
with weight 1 input symbol into the zero-input loop at state .$l (D), the
most significant bit of the “prccleccssor” state S 2“”-[ (I))  bc zero. Using
eqs. 3 and 4 we can establish that

hi” + hi,~, = O (5)

Obviously, when we enter the zero-input loop from the all-zero state and
when wc leave this loop to go back to the all-zero state we. would  like the
parity ouflmt  to he equal to 1. Fkom  cq. 1 and 5 we require

}d,[] = 1 hi,”,, = 1 (6)

With this condition wc can enter the. zero-input loop wi~  a weight-1
symbol at state S1 (l)) and ~hc.n leave [his loop from sta~e S2 ] -1 (D) back
to the all-~cro state, for the same weight-1 input. The parity-weight of the
codeword corresponding, to weight-2 data sequences is then 2“’J -1 + 2,
where the first tcrrn is the wcixht of the Zero-input loop and the. second
term is duc to the parity bit appearing when entering and leaving the loop.
If b = 1 [hc proof is complete and the condition to achieve the upper
bound is given by 6. For b = 2 WC may enter the zero-input loop with
u = 10 at state S1 (D) and leave the loop to the zero state with u = 01
at some slate SJ(D).  If we can choose Sj(D) such that the output weight
of the zeio input loop from S1 (D) [o .YJ(D) is exactly 2“’)-1/2 then the
output weight of the Zero-input loop from Sj+ 1 (D) to S2~-1 (D) is exactly
2mI  - 1/2, and the minimunl  weight of codewords corresponding to some
weigh t-2 data scquenccs is

gmj-1

In general, for any b if wc extend the procedure for b = 2, the minimum
weight of the codewords corresponding to weight-2 data sequences is

-2rnj-l

1 -~ J+2 (7)

where [x] is the largest in(c.gcr lCSS than or equal to x. Clearly this is the
best achievable weight for the minimum weight codeword corresponding
to weigiit-2 data scqucnccs. This trppcr bound can be achieved if the
nlaximul{l  run length of 1‘s (njj)  in the zero-input loop dots not exceed

[~~~~j,  where b is a POWLV  of 2
The run property of h41 ~ F’SRS  can help us in designing codes achieving

this upper bound. Consider only runs of 1‘s with length 1, for O <1 <
~)~j -- 1, [hen there are ?’”~  -2-’ runs of length 1, no runs of length m j --1,
and only one run of length m 1. For a more detailed proof and conditions
when b is not a power of 2 scc [14] ❑
Corollotv.  For any r =. b/tL recursive systematic convolutional code with
binputs, b systematic ou[puts andn –bparity output bits using a primitive
feedback. sgcncrator,  wc hi]w

‘~@--b)[L~2J+-21 (8)

Proof. A trivial solution is to repeat the parity output of a rate & code.
Then if (his cocle achieves the upper bound so dots a rate b/n code, D
‘fhcre is an advantage in using b > 1 since the bound in eq.(8) for rate
b/bn codes is larger than the bound for rate I/n codes.
Best ILatc 2/3 Constituent Codes. Wc obtained the best rate
2/3 cocks as shown in Table 1, where o’~2 is simply denoted by d; and
d2 = d; + 2. Mini nlun, wci.ght codewords corresponding to weight-3
data scquenccs arc denoted by d3, o’~;” is the minimum distance of the
code, atld k = ttlj i 1 in all tables. By “best” we only rncan codes with
large d? for a given t~lj.

Best 1 Late 4/5, 1 G-State  Constituent CcSdCs.  All three codes
found h~ve four common g.cncrators  hO == 23, hl = 35, Itz = 31, bj = 37,
plus an additional generator hi = 27, or b~ = 21, or hd = 33, all yielding
d2 = 5 and d.li. = 4.
Trellis ‘1’ermination  for b/n cocles with canonical realiza-
tion. ‘1’rcllis termination is performed (for b = 2) by setting the switch
shown in Fig, 2 in posi[ion 1]. I’hc tap coefficients ~io, . . . . ai,nl,  _l for
i=.1,1 , . . . . b can bc obtained by rcpcatcd usc of cq. (2), and by solving



4

,.

,
k II Code Generator
3 }Jo=7h  I=~h2=5 FRFz=

14 _-Ll___

ho= 13 h l = 15 hz= 17 5 4 4
5 h o  = 2 3  hI =35 hz =27

hI) = 23 h[ = 35 IIz = 33 8 5 5
8 5 5

6 }1 .=45  hI =43 ht =61 12 6 6— ———- —.

F
2
3
4
5

—

_.—. .-— — . . .
Code Gcrrcrator_.— —. ——. ..—

go=:  3gl=2g2==l

go=7gl=5g2==3
g[)=: 13 g] =:17  g2 =15
go=23gl=:33g2==37
go =: 23 g! ~= 35 @ = 27

Ill——
4
8
14
22
22

x
co
7
10
12
II— .

dmi.
4
7
10
10
11

Table 1: Best rate 2/3 constituent codes,
‘f’able 3: Best rate 1/3 constituent codes (without parity repetition).

[

k
3–
4
5 1

C o d e  Grxreralor dz——
go=7gl=5 4

.go=13gl=15  5
g[)=23gl==37 7
go==23g,  =31 7
gO=23g1 =33 6
gO=23gl  =35 6
gO=23gl  =27 6— — - — — — - — .

d 3— .
3
4
4
4
5
4
4

——
dmi.—. .—

3
4
4
4
5
4
4—  .—

Table 2: Best rate 1/2 punctured constituent codes.

the resulting equations. ‘f’he trellis can bc terminated in state zero with at
least nrj/b  and at most nlj clock cycles (see [ 141 for details). When ~g. 3
is extended to multiple input bits (b parallel feedback shift registers), a
switch should be used for each input bit.
Bes t  P u n c t u r e d  R a t e  1/2 Cons t i tuent  Coclcs. A rate 2/3
constituent code can be derived by puncturing the parity bit of a rate 1/2
recursive systematic convolutional code. If the parity puncturing pattern is
P = [10] or P = [01] then wc show in [14] that it is impossible to achieve
the upper bound on dz = d; +-2 for rate 213 codes. (A Puncturing Paltcrn
P has zeros where symbols are removed. The best rate 1/2 constituent
codes with puncturing pattern P = [10] arc given in Table 2.
Best Rate 1/3 Constituent Codes. For rate I/n codes the upper
bound in cq. 7 for b = 1 rcduccs to

df2 s (n– l)(2m~-1 + 2 )

This upper bound was originally derived in [5], where lhc best rate 1/2
constituent codes meeting the bound were obtainecl.  }Icrc we present a
simple proof based on our previous general result on rate b/n codes. Then
we obtain the best rate 1/3 codes without parity repetition. In [14] we
illustrate how parity repetition is undesirable for codes to bc decoded with
turbo decoders.

r B

+b-

-—— %

r gore 3: Rate 1/n code.

Consider a rate I/n code shown in Fig. 3. In this figure g[l(D) is
assumed to be a primitive polynomial. As discussed above, the output
weight of the zero-input loop pcr parity bit is 2“) -1 inrlepcndcnt of tbc
choice of gi(D),  i = 1,2, ..., n – 1, provided that gi (D) # O and

that g;(1)) # glJ(l)), by the shift-and-add and balance properties of ML
FSRS. 1[ S(D) represents the state polynomial, then we can enter the
zero inpu[ loop only at stale S1 (D) = 1 and leave the loop to the all-zero
~tatc at state s2=’J - I(1)) = ]Y,J  -1. The P panty oulput on the transition

St(f)) -> S2m’-] ([~) with m.ro input bit is

Xj ‘:: gi(J + gj,~,

If gjo = I and gi,n,,  = 1 for i == 1, . . . . n – 1, the Output  weight of the
encoder for that transition is zero. The output weight when entering and
leaving tt,e zero-input loop is (n – 1 ) for each case. In addition, the output
weight of the zero-input lC)OP will be (n – l)2mI-’.  Thus We can achieve
the. uppel bound.

We obtained the best rate 1/3 codes without parity repetition as shown
in Table 3, where d2 = d: -I 2 represents the minimum Output weight
given by weight-2 data scclucnces. The best rate 1/2 constituent codes are
given by go and gl in this table, as was also reported in [5].

\~l. ~’~l{}lo ] )~;C:O1}~NG  pOI~ MU1,TIPI,R  (jODRs

In this section, we ccmsidcr decoding algorithms for multiple-code turbo
codes. In general, the advantage of using three or more constituent codes
is that the corresponding two or more interleaves have a better chance
to break sequences that were not broken by another intcrleaver. The
disadvantage is that, fcw an overall desired code rate, each code must
be punc[ured more, resulting in weaker constituent codes. Also shorter
constrairlt length codes should be used for successful operation of the turbo
decoder. In our experiments, wc have used randomly selected interlcavcrs
and S-ralIdom interleavcrs.

Let U1 be a binary random variable taking values in {O, 1), represent-
ing tbc se.qucncc of information bits u = (u], . . . . u,v). The MAP algo-
rithm [1] provides the log likelihood ratio I,k, given the received symbols

Y:

Lk = P(ui=ll )
‘Og d

—---------L  YO=p(,.-l)+.o--J@-Dii~}A-.V  ,I=p(,.t-1)+.l
—.

}~ig,ure 4: Channel Model

For effi[ icnt computation of F-cI. (9) when the a priori probabilities P(uj)
are nonuniform, the moclificd MAP algorithm in [15] is simpler to use
than the version considered in [7]. Therefore, in this paper, we use the
modified MAP algorithm of [1 5].
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If the rate b/n constituent code is not equivalent to a punctured rate

1/n’ code or if turbo trellis coded modulation is used, we can first use
the symbol MAP algorithm [1] to compute the log-likelihood ratio of a
symbol u = u!, UZ, . . . . ub given the observation y as

P(uly)
* ( U )  = ‘og P(oly)

where O corresponds to the all-zero symbol. Then we obtain the log-
likelihood ratios of the. jth bit within the symbol by

~(uj) = log z+=, e’(u)
LU.M,.,  “( u )

In this way the turbo decoder operates on bits and bit, rather than symbol,
interleaving is used.

The channel model is shown in Fig. 4, where the n~i’s  and the n lk’s
are independent identically distributed (i.i.d.) zero-mean Gaussian ran-
dom variables with unit variance, and p = ~m is the SNR. The
same model is used for each encoder. To explain the basic decoding con-
cept, we restrict ourselves to three codes, but extension to several codes
is straightforward. In order to simplify the notation, consider the combi-
nation of permuter and encoder as a block code with input u and outputs
xi,  i = O, 1, 2, 3(xo = u) and the corresponding received sequences Yi,
i = O, 1, 2, 3. The optimum bit decision metric on each bit is (for data
with uniform a priori probabilities)

~1 = log ~ll:ul=l ~(YOIU)~(YIlu)~  (YZlu)P(Y31u)

Lu:.i=o ‘(YOIU)P(YIIU)P(YZIU)  P(Y31U) ’1 0 )

but in practice, we cannot compute F4. (1 O) for large N because the per-
mutations rr2, 7r3 imply that y2 and y3 are no longer simple convolutional
encodings of u. Suppose that weevahsate P(YJ Iu), i = O, 2,3 in F~. (10)
using Bayes’ rule and using the following approximation:

‘(ulYi)  = fi ‘i(”k)

k=t

(11)

Note that P(UIYi) is not separable in general. However, for i = 0,
J’(uI yo) is separable; hence, EkI. (11) holds with equality. If such an
approximation, i.e., E3q.  (1 1), can be obtained, we can use it in F~. (10)
for i = 2 and i = 3 (by Bayes’ rule) to complete the algorithm. A
reasonable criterion for this approximation is to choose rl~sl pi  (ui)  such

that it minimizes the Ktrltback distance or free energy [3, 16]. Define ~ik
by

A i.{,
(12)

where (ik G {O, 1). 7“hen the Kullback distance is given by

Minimizing  F’(~.i) involves forward and backward recursions analogous
to the MAP dceoding algorithm, but we have not attempted this approach
in this work. Instead of using F.q. (13) to obtain (Pi) or, equivalently,
(~.ik].  we use Fqs. (11) and ( 12) for i = 0,2,3 (by Ftaycs’ rule) to
express ~. (10) as

Lk & J(y,,  Lo, iz, L3, k) -t L)k +  L2k +- L (14)

where & = 2PYok  (for binary modulation) and

f(Yl fo i, i,, ~)= ,Og L“k=, ~(Yllu) nj#ke”,(’0,+L2,  +’3,’,J,  ,,

Xu:u,=o  P(YIIU)  ~j~ke”)(LO}+’2j+~3,)

(15)

We can use Eqs. (1
express Iiq. (10) as

and (12) again, but this time for i = 0, 1, 3, [O

I,k == _f(y2, ~4),  tI,f13,/() + ~ok  +-  ilk + ~3k (16)

and similitrly,

].t = f(yj, ];0, f,,,  ~J2, k)’+ & + ~.lk ~ i2k (17)

A soltrtioll  to f3qs.  (14), (16), and (17) is

ilk = f(y,, ~4),  ~2,~3i~)

iazk = j-(y2, h tl, G, k)

i.~k ‘: j-(y,, G,, L. L. k) (18)

fork = 1,2, ~ . . . N, provided that a solution toBq.(18) dots indeed exist.
The final decision is then based on

1,~ = iq)k ‘t ilk + i.2k + ~3k (19)

which is l~assed through a bard limiter with zero threshold. We atlempted
to SOIVC  the nonlinear equa[ions in Eq. (18) for Ll, ~.2, and fi3 by using
tbe iterative procedure

i,fl+l)  = &\”’)  f(y,, f>o,  i$), iy), k) (20)

fork  =1,2,  ..., N, iterating on tn. Similar recursions hold for I& and
‘m) shoulci bc equal to one, but we noticed experimentally~~). The gain al

that better convergence can be obtained by optimizing this gain for each
iteration, starting from a value slightly lCSS than one and increasing toward
one with the iterations, as is often done in simulated annealing methods.
We start lherecursion  with the initial condition2 L~ =, ~~~ = L:) = Lo.
For the computation of ~(.), wc usc the modified MAP algorithm as
described in [9] with pctnmmrs  (direct and inverse) where needed, as
shown ii] Fig. 5. The MAI’ algorithm always starts and ends at tbe all-
zero state since we always terminate the trellis as described in [9]. Wc
assumed Zi = I identity; however, any Xl can be used. The overall
decoder is composed of block decoders connected as in Fig. 5, which can
be implrmcnted as a pipeline or by feedback. In [11] we proposed an
alternative version of tbe tibove dccodcr which is more appropriate for use
in turbo trellis coded modulation, i.e., set ~.. = O and consider y. as part
of yl. 1( the systematic hits are distributed among encoders, we use the
same distribution for y(, amcmg the MAP decoders.

At this point, further approximation for turbo decoding is possible if
one ternl corresponding to a sequcncc u dominates other terms in the
surnma!ion in the numerator and denominator of F4. (15), ‘f’hen the sum-
mations in Eq. (15) call be rcplaccd by “n~aximum” operations wi[h the
same indices, i.e., replacing ~tl,wl=i  with ~l~,~.i  for i = O, 1. A similar

afsproxilnation can be used for i,zk  and iJ3k in ~. (18). This suboptimum
dccodcr then corresponds to a turbo decoder that uses soft output Viterbi
(SOVA)  type dccodcrs rsrthcr  than MAP dccodcrs. Furthc.r approxin~a-
tions,  i.e., replacing >; with max can also be used in the MAP algorithm.

V I ] .  MUI,T’IIII,N-CCJI)I: AI,  C; OIWTIIM APPLIND TO TWO
CODES

For turbo codes with only two constituent codes, Eq, (20) reduces to

i(~l+l) ,:
‘l& Up) f(y,,  iJ,), f.p, k)

I (m~[) ,,
‘2k ay)f(yz, ill, fjp), k)

fork =1,2, . ,Nandm= -1,2,..., where, for each iteration, a ~) and
cry) earl bc optimi?.cd  (silnulatcd annealing) or set to 1 for simplicity. The
—.-—  ——— .-—. .  .

ZNOI(  ~hal the COIIIpOrICmS  of the ~>i’s  coricsponding to the tail bits, i.e.. ~,ik.
fork= N-t l,.. , N -t Al, m set to mro for all iterations,



(Y~,,~I  ml gI = (1)~,,~1,  and K = 5 with (gl /go,  where go = (23).,,.,
and g, = (33) Oc,of the rcquilcd bit SNR  was 0.8S d~. This is an example.
where the systematic bits are nol transmitted. For rate 1/3, we used two

111~ .—

I ‘_; ‘‘~‘
C)EIAY

L,(m)

MAP 2 L2 Qm+  1 )
+ ~z -1X2 *

L,[M)
S&A 2

Y2

14! ! —

[llJ======E&+pJ.-  DEcoDEDB,Ts
Figure 5: Multiple Turbo Decoder Structure

decoding configuration for two codes, according to the previous section,
can be obtained from Fig. 5. In this special case, since the paths in Fig. s
are disjoint, the decoder structure can be reduced to a serial mode structure
if desired.

If we optitnize o$’) and CY$”’),  our method for two codes is similar to the
decoding method p~oposcd  ~rr [7], which requires estimates of the vari-
ances of ~lk and & for each iteration in the presence of errors. In the
method proposed in [15], the received “systematic” observation was sub-
tracted from ~1~, which may result in performance degradation. In [18]
the method proposed in [1 S] was used but the received “systematic” ob-
servation was interleaved and provided to decoder 2. In [9], wc argued
that there is no need to interleave the received “systematic” observation
and provide it to decoder 2, since ~.o~ dots this job. lt seems that our
proposed method with a~) and rv~) equal to 1 is simple and achieves the
same performance reported in [18] for rate 1/2 codes.

V I I I .  PERFOItMANCP;  AND S I M U L A T I O N  RFXULTS

The bit error rate performance of these codes was evaluated by using
transfer function bounds [6] [13]. In [13] it was shown that transfer
function bounds are very useful for signal-to-noise ratios above the cutoff
rate threshold and that they cannot accurately predict performance in the
region between cutoff rate and capacity. In this region, the performance
was computed by simulation.

Figure. 6 shows the performance of turbo codes with m iterations
and the following generators: For two K = 5 constituent codes,
(i, gi/gO, gz/gO) and (g I/gO), with go = (37)~,,~1, gt = (33)0,,01  and
g 2 = (25)OC,.I;  For three K == 3 codes, (1, gj /go) and (g} /go) with
go = (7)M01 and g] = (5).,,01;  F;or three K = 4 codes, (1, g, /go) and
(gl/gO) with gO == (17)0.1.1 and gl = (11)~,,.f.

Further results at BER=I  0-5 were obtained for two constituent codes
with interleaving size N == 16384 as follows. For a rate 1/2 turbo code
using two codes, K = 2 (differential encoder) with (gl /go) where g[) =

K = 5 codes, (1, gl/go)  find (gl/gO) with go = (23)”,,01 and g! =
(33).,,01 ~nd obtained bit SNR= 0.25 dB. For rate 1/4, wc used two K =
5 codes with (1, gl/go,  gt/go)  and (gl/go)  wittl go = (23)0,101, gl =
(33)oc1al and gz = (25),,,,./ and obtaincdbit  SNR = Odfl. A fixed number
of iterations nr = 20 was used for all cases. Many of these codes may
actually require a smaller number of iterations for BEIR=l  O-s or below.

The simulation performance of other codes reported in this paper is
still in progress.
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Figure  6: l’erformance  of turbo codes

I X .  ‘1’URBO  ‘J’RE1,Ms ~orrm MO~ULATION

A pragn,atic approach fol- turbo codes with multilevel modulation was
proposed in [8]. I Ierc we propose a different approach that outperforms
the results in [8] when M-QAM  modulation is used. A straightforward
method to use turbo cc)dcs for multilevel modulation is first to select a
rate A constituent code whe.rc the outputs are mapped to a 2*+ l-level
modulation based on Ungerbocck’s  set partitioning method (i.e., wc can
usc Urrgerboeck’s codes with feedback). lfMPSK  modulation is used, for
every b tlits at the input of the lurbo encoder we transmit two consecutive
2b~ 1 PSK  signals, one pcr each cncodcr  output. ‘I’his results in a throughput
of b/2 bitsJseclHz. If M-QAM modulation is used, we map the b + 1
ou@rts of the firsl component code to the 2*+ 1 in-phase levels (l-channel)
ofa22b’2-QAM signal set, and the b + 1 outputs of the second component
code to the 2*+] quadrature levels (Q-channel). l’hc throughput of this
system is b bits/see/H?.

Fir.s[,  we note that thcst- nlethods require more Icvels of modulation than
conventional ‘f’CM, which is not dmirablc in practice. Second, the input
information scqucnccs ate used twice in the output modulation symbols,
which is also not desirable., An obvious remccly is to puncture the output
symbols of each trellis code and select the puncturing pattern such that
the outfwt symbols of the turbo code contain the input information only
once. If the output symbols of the first encoder is punctured, for example
as 101 OIO. ... the. prrllcturirrg pattern of the second trellis code is non-
unifornl and depends on the particular choice of interlcavcr. Now for
exanlPlc, for 2*+ I.PsK  a throughput  b can be achicvcd. This method has

two drawbacks, it complicates the cncodcr and decoder and the reliability
of punctured symbols may not bc reproducible at the decoder. A better
remedy, for & (b cvcrl), is to select the b/2 systematic outputs and
puncture the rest of the. systematic outputs, but keep the parity bit of the
~~, code (Note that the ~~-, may have been already obtained by puncturing---

a rate 1/2 code). ‘l’hen do the sarnc to the second constituent code but select
only th{m systematic bits which were punctured in the first encoder. This
method requires at Icast two imcrle.avers: the first intcricaver permutes the
bits selcctcd by the frrst et]codcr and the second intcrlcaver those punctured



.
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by the first cncodcr.  I;or MPSK (or MQAM) we can use 21+L12 PSK
symbols (or 21+”/2 QAM symbols) per encoder and achieve throughput
b/2. For M-QAM we can also use2 l+h/*  levels  in the l-channel and 2’+h12

levels in the Q-channel, and achieve a throughput of b bits/seclHz. These
methods are equivalcrrt to a mulli-dimcrtsional trellis coded modulation
scheme (in this case, two multi-level symbols per branch) which uses
Zb/2  x 2]+bf2 symbols pm branch, where the first symbol in the branch
(which only depends on uncodcd information) is punctured. Now, with
these methods the reliability of the punctured symbols is reproducible
at the decoder. Obviously, the constituent codes for a given modulation
should hc redesigned hascd on the Euclidean distance. In this paper we
give one example forb = 2 with 16QAM  modulation where for simplicity
wc can LK+C  the 2/3 codes in Table 1 with Gray code mapping. Note that this
may result in SUbOpti  IllllIll constitucrr[  codes for multi-level modulation.
The turbo cncodcr with 16QAM and two clock cycle trellis termination
is shown in Fig. 7. The BER performance of this code with the turbo
decoding structure for two codes discussed in Sec. VI is given in Fig. 8.
For permutations ml and rrz wc used S-random permutations with S=40
and S=32  with Mock siTe of 16384 bits. For 8PSK we used the best
16-slate rate 4/5 code given in Sec. V to achieve throughput 2. More
examples for 8PSK and 16QAM are given in [14].
U2

L

[

I 1==--~-”l”-’—.—
Figure 7: Ttrrbo Trellis Coded Modulation, 16QAM, 2 bits/see/Hz

X. C O N C L U S I O N S

In this paper wc have shown that powerful turbo codes can be obtained if
multiple constituent codes are used. Wc proposed an iterative decoding
method for mttltiplc turbo codes by approximating the optimum bit deci-
sion rule. Construction of a partially ranclom intedcavcr  was discussed.
A probabilistic argument was used to show the importance of maximizing
the minimum output weight of constituent codes duc to weight-2 input
sequences in the design of turbo codes. We obtained an upper bound on
this minimum output weight for rate b/tl constituent codes. We found the
best rate 2/3 ,1/3 and 16-state rate 4/5 constituent codes that can be used
in the design of multiple turbo codes. Wc proposed new schemes that can
bc used for power and bandwidth efficient turbo trellis coded modulation.
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